166 QUINNIPIAC RIVER BASIN ## 01196222 QUINNIPIAC RIVER NEAR MERIDEN, CT LOCATION.--Lat 41°31'45", long 72°51'50", New Haven County, Hydrologic Unit 01100004, at bridge on Cheshire St., 3 mi west of Meriden, and 1.7 mi upstream from Hanover Pond. DRAINAGE AREA.--69.6 mi². PERIOD of RECORD.--Water year 1974 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | WAIEK-QUALITI DATA, WAIEK TEAK OCTOBER 2001 TO SEFTEMBER 2002 | | | | | | | | | | | | | | |---|--|--|---|---|--|--|--|--|---|--|---|---|--| | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ENTERO-
COCCI,
MEI MF,
WATER
(COL/
100 ML)
(90909) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | OCT
10
DEC | 1230 | 46 | 384 | 7.6 | 20.0 | 11.5 | 1.2 | 9.7 | 88 | 420 | 76 | 120 | 39.4 | | 06 | 1330 | 39 | 402 | 7.7 | 19.5 | 10.0 | 1.3 | 10.1 | 90 | 967 | 208 | 130 | 41.3 | | FEB
04 | 1310 | 49 | 396 | 7.7 | 8.0 | 3.5 | 2.8 | 13.1 | 100 | 8500k | 2020k | 110 | 35.7 | | APR
03 | 1400 | 93 | 320 | 7.8 | 22.0 | 12.0 | 2.0 | 12.0 | 113 | 8500k | 400 | 93 | 29.6 | | JUN
18 | 1300 | 122 | 271 | 7.5 | 21.0 | 18.0 | 5.0 | 8.6 | 91 | 303k | 212 | 80 | 25.3 | | JUL
16 | 1350 | 15 | 412 | 7.5 | 31.0 | 22.0 | 3.1 | 6.4 | 73 | 580 | 108 | 130 | 41.3 | | AUG
14 | 1310 | 21 | 436 | 7.6 | 35.5 | 26.0 | 1.8 | 8.7 | 107 | 84k | 100 | 130 | 42.3 | | SEP
12 | 1330 | 24 | 427 | 7.2 | 21.0 | 17.5 | 1.8 | 8.4 | 88 | 236 | 192 | 130 | 40.8 | | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
(00500) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT
10
DEC | 5.84 | 26.1 | 3.90 | 0 | 93 | 77 | 21.3 | 45.9 | .2 | 14.3 | 234 | 228 | .050 | | 06
FEB | 6.01 | 26.1 | 4.19 | 0 | 110 | 91 | 19.6 | 47.1 | .2 | 12.4 | 256 | 256 | .035 | | 04 | 5.45 | 29.5 | 3.65 | 0 | 93 | 77 | 17.9 | 48.5 | .1 | 12.9 | 228 | 240 | .085 | | APR
03 | 4.55 | 21.9 | 2.44 | 0 | 71 | 58 | 15.9 | 37.6 | .2 | 9.70 | 181 | 195 | .024 | | JUN
18 | 3.97 | 17.8 | 2.68 | 0 | 68 | 56 | 11.9 | 30.6 | E.1n | 11.4 | 165 | 179 | .020 | | JUL
16 | 6.01 | 27.5 | 4.60 | 0 | 98 | 80 | 17.9 | 45.8 | .2 | 13.9 | 243 | 268 | .106 | | AUG
14 | 6.11 | 29.8 | 5.45 | 0 | 104 | 85 | 20.3 | 47.5 | . 25 | 14.7 | 265 | 275 | .012 | | SEP
12 | 5.88 | 28.2 | 5.10 | 0 | 98 | 80 | 23.3 | 46.6 | .3 | 14.6 | 270 | 274 | E.007 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) (00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | OCT
10
DEC | 5.56 | E.03 | | .39 | .38 | 6.0 | .67 | .66 | .62 | 4 | <.05 | 107 | <.06 | | 06
FEB | 6.05 | <.04 | | .44 | .38 | 6.5 | .73 | .75 | .71 | 3 | .09 | 105 | <.06 | | 04
APR | 4.61 | .57 | .47 | 1.0 | .92 | 5.7 | .68 | .62 | .59 | 6 | .08 | 92 | <.06 | | 03
JUN | 3.18 | <.04 | | .37 | .29 | 3.6 | .35 | .35 | .33 | 10 | .31 | 83 | <.06 | | 18
JUL | 2.41 | E.04 | | .40 | .34 | 2.8 | .30 | .23 | .23 | 10 | .11 | 77 | <.06 | | 16 | 6.99 | E.03 | | .72 | .46 | 7.7 | .89 | .92 | .90 | 5 | .12 | 112 | <.06 | | AUG
14 | 7.19 | E.03 | | .49 | .44 | 7.7 | .88 | .91 | .90 | 5 | .12 | 112 | <.06 | | SEP
12 | 7.07 | <.04 | | .55 | .43 | 7.6 | .91 | .90 | .92 | 5 | .10 | 110 | <.06 | ## 167 QUINNIPIAC RIVER BASIN ## 01196222 QUINNIPIAC RIVER NEAR MERIDEN, CT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | |---|---|---|--|--|--|---|---|--|---|--|---|--| | | | | | | | | | | | | | | | .18 | <.8 | .19 | 3.6 | 58 | .15 | 52.7 | . 4 | .10 | <1 | 13 | .26 | 3.4 | | | _ | | | | | | | | | | | | | .08 | E.7 | .26 | 3.4 | 51 | .13 | 28.2 | . 4 | .67 | <1 | 13 | .22 | 3.8 | | 1.0 | | | 0 5 | 7.6 | 1.0 | 216 | | 0.5 | | 1.4 | 0.0 | 2 0 | | .13 | E.6 | .17 | 2.5 | 76 | .13 | 316 | . 4 | .85 | < 1 | 14 | .28 | 3.8 | | 0.0 | | 1.0 | 2.6 | 100 | 1.2 | 101 | - | 1 10 | -1 | 1.0 | 25 | 4.2 | | .08 | E.5 | .10 | 2.0 | 120 | .13 | 121 | .5 | 1.12 | < T | 10 | .25 | 4.2 | | 0.0 | - 0 | 1.2 | 2.6 | 166 | 21 | E/1 0 | 1 | 1 21 | _1 | 7 | 16 | 5.0 | | .00 | <.0 | .12 | 2.0 | 100 | .21 | 34.0 | . 7 | 1.21 | ~_ | , | .10 | 3.0 | | 13 | < 8 | 21 | 4 8 | 61 | 15 | 53 3 | 1 0 | 1 40 | ~ 1 | 15 | 27 | 4.3 | | .13 | ٠.٥ | | 1.0 | 01 | .13 | 33.3 | 1.0 | 1.10 | | 13 | | 1.5 | | . 15 | E.4 | . 21 | 4.6 | 26 | E.07 | 71.5 | 1.0 | 1.54 | <1 | 15 | . 33 | 3.9 | | . 20 | | | | | , | . 1.5 | | | - | | | | | .14 | <.8 | .21 | 4.2 | 25 | .11 | 94.8 | 2.0 | 3.04 | <1 | 14 | .31 | 4.3 | | | DIS-
SOLVED
(UG/L
AS CD)
(01025)
.18
.08
.13
.08
.08 | CADMIUM MIUM, DIS- DIS- SOLVED (UG/L (UG/L AS CD) AS CR) (01025) (01030) .18 | CADMIUM MIUM, COBALT, DIS- DIS- SOLVED SOLVED SOLVED (UG/L (UG/L (UG/L AS CD) AS CR) AS CO) (01025) (01030) (01035) .18 <.8 .19 .08 E.7 .26 .13 E.6 .17 .08 E.5 .16 .08 <.8 .12 .13 <.8 .21 .15 E.4 .21 | CADMIUM MIUM, DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED (UG/L (UG/L AS CD) AS CR) AS CO) (01025) (01030) (01035) (01040) .18 | CADMIUM DIS- DIS- DIS- SOLVED SOLVED (UG/L AS CD) AS CR) COBALT, DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED (UG/L (UG/L AS CD) AS CR) COBALT, DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED (UG/L (UG/L AS CD) AS CD) COBALT (UG/L (UG/L AS CD) AS CD) AS CD) COBALT (UG/L AS FE) (01025) (01030) (01035) (01040) (01046) .18 <.8 | CADMIUM DIS- DIS- DIS- DIS- SOLVED SOLVED (UG/L AS CD) AS CR) COBALT, COPPER, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | CADMIUM DIS- DIS- DIS- DIS- SOLVED SOLVED (UG/L AS CD) AS CR) COBALT, COPPER, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | CADMIUM DIS- DIS- DIS- DIS- SOLVED SOLVED (UG/L (AS CD)) COBALT, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | CADMIUM DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED (UG/L (AS CD)) COBALT, COPPER, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, DIS- DI | CADMIUM DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED (UG/L (| CADMIUM MIUM, COBALT, COPPER, DIS- | Value qualifier codes used in this report: k -- Counts outside acceptable range n -- Below the NDV